INFECTIOUS DISEASE: OVERVIEW AND UPDATE

MAY 18, 2023 BEVERLY FORSYTH, MD PROFESSOR OF MEDICINE AND INFECTIOUS DISEASES ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI

OBJECTIVES

- Understand the difference between bacteria, viruses, and fungi, and parasites
- Understand how the immune system responds to pathogens
- Review different types of vaccines
- Understand which pathogens are most concerning for corneal transplant
- Apply understanding of infectious diseases to the review of medical charts

INFECTIONS

Bacteria, fungus, virus, parasite ... what's the difference and should I care?

Bacteria

- Large group of single-celled
 organisms
- Ubiquitous
- Vital to ecosystem
- Prokaryote (bacterial DNA floats freely within the cell)
- Structure: 5 basic shapes:

Spherical (cocci) Rod (bacilli) Spiral (spirilla) Comma (vibrios) Corkscrew (spirochetes)

- Humans/other animals carry vast numbers of bacteria, most in gut
- Most are harmless, many beneficial
- Many species are pathogenic or have the potential to be pathogenic

© ttsz / iStock Different bacterial shapes.

Common Bacterial Pathogens (Worldwide)

- Mycobacterium tuberculosis
- Staphylococcus
- Streptococcus
- Pseudomonas
- Shigella
- Campylobacter
- Typhoid
- Diptheria

GBD super-region

By Authors of the study: GBD 2019 Antimicrobial Resistance Collaborators https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(22)02185-7/fulltext, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=127577217

BACTERIAL VIRULENCE FACTORS

'E BANK

SOCIATION

Viswanathan, Pragasam & Suneeva, S.C. & Rathinam, Prasanth. (2015). Quorum Sensing in Pathogenesis and Virulence. Quorum Sensing vs Quorum Quenching: A Battle with no end in Sight. 39-50. 10.1007/978-81-322-1982-8_4.

 Toxin production Structure of bacteria Enzymes

TREATMENT

- Antibiotics typically active against bacteria ONLY
- Mechanism—kill OR inhibit growth
- Resistance—evolutionary process caused by drug pressure selecting for resistant strains; overuse/misuse contributing factor
- Misuse—antibiotics are often prescribed for VIRAL infections and/or fungal infections

Fungi

- Can be single-celled or complex multi-celled organisms
- Ubiquitous but most live in soil or plant material
- 6 million species, more than
 600 associated with humans
- Commensals (e.g. part of our microbiome)
- Pathogens (diseaseproducing, most often in immunocompromised hosts)

Fungi

- Sub-divided based on their life cycle:
- Multicellular filamentous 1. molds
- 2. Single-celled microscopic yeasts
- 3. Macroscopic filamentous fungi (mushrooms)

Structure of Fungal Cell

- Cell wall and cell membrane provide structural rigidity and stability
- More complex than bacterial cell

O dreamstime.com

Fungal Pathogens

Common

Candida albicans (non-invasive), found on skin and in gut

Associated with specific regions

- Blastomycosis Coccidiomycosis
- Cryptococcus
- Histoplasmosis

- Immunocompromised
 Aspergillus
 Candida spp (invasive)
 Mucormycosis

Many fungal infections are self-limited in immunocompetent host and are noninvasive

Fungal Eye Infections

- Candida species (in gut, skin, ubiquitous)
- Fusarium (lives in soil)
- Aspergillus (common fungus in environment)

http://www.freestockphotos.biz/stockphoto/16349

FUNGAL VIRULENCE FACTORS

https://www.sciencedirect.com/science/article/abs/pii/S1369527416300650?via%3

Current Opinion in Microbiology

Structural (cell wall)

- Morphological transition
- Adherence to surfaces
- Toxins
- Enzymes

Metabolic Flexibility: Efficient use of alternate carbon sources, stress resistance, cell surface changes

Evasion from host immune system: Changes in cell wall architecture and composition, masking of PAMPs

Escape from phagocytosis: Vomitosis, hyphal lysis of host cells, phagolysosomal neutralization, pyroptosis

> **Countering Host** Nutritional Immunity: Micronutrient uptake transporters and redundant proteins with alternate cofactors

> > Yeast to Hyphal Morphogenesis: In response to temperature, serum, alkaline pH, nutrient starvation, CO2

EYE BANK

ASSOCIATION

AMERICA®

Hydrolytic Enzymes Saps, Lip, Plp: Degradation of host connective tissues, cleavage of host immune factors, nutrient acquisition

Key Virulence Factors of Candida albicans

Candidalysin: Secretory cytolytic peptide damaging host immune cells

Phenotypic Switching: Opaque cells resistant to neutrophil engulfment

Biofilm formation: Resistant to antifungals and host immune defence

Adherence to Host Surfaces: Expression of adhesins

Current Opinion in Microbiology

https://www.sciencedirect.com/science/article/pii/S1369527416301230?via%3Dihub

TREATMENT

wall synthesis
caspofungin, nidulafungin
NO A
ican synthesis
icult synthesis
\$1.\~44
glucan
ion of ynthesis
dines: osine

- Damage cell membrane or inhibit cell wall synthesis
- Topical, oral, IV

Challenges:

- Eukaryotic animal cells and fungal cells share many of the same cell structures and targets—leads to severe side effects
- Resistance is common

CANDIDA AURIS

- Species of genus Candida, grows as yeast
- First identified in 2009
- Multiple drug resistance
- Easily misidentified as other candida species
- Mortality with bloodstream infection due to C. auris 30%-60%

Casadevall A, Kontoyiannis DP, Robert V. On the Emergence of Candida auris: Climate Change, Azoles, Swamps, and Birds. mBio. 2019 Jul 23;10(4):e01397-19. doi: 10.1128/mBio.01397-19. PMID: 31337723; PMCID: PMC6650554.

Viruses

- Submicroscopic infectious particle that can only replicate in living cell
- Cannot exist outside of cell
- All contain nucleic acid (DNA or RNA), encodes unique genetic information
- Almost all have a shell (capsid)
- Most have other proteins
- Infect all life forms (plants, animals, bacteria) EYE BANK ASSOCIATION

VIRAL PARTICLE (VIRION)

VIRAL REPLICATION

Ortega, Victoria & Stone, Jacquelyn & Contreras, Erik & Iorio, Ronald & Aguilar, Hector. (2018). EYE BANK Addicted to sugar: roles of glycans in the order Mononegavirales. Glycobiology. 29. ASSOCIATION of America®10,1093/glycob/cwy053.

VIRAL **PATHOGENS/DISEASES**

- **Respiratory Viruses**
 - Rhinovirus (one of the causes of common cold)
 - Influenza
 - SARS-CoV-2 (causes COVID)
 - Measles
- **Emerging pathogens**
 - Ebola
 - Mpox (formerly monkeypox)

- Zoonosis
 - Rabies
 - West Nile Virus
 - Yellow Fever
- Other
 - Chickenpox and shingles •
 - Human Immunodeficiency Virus • (HIV)
 - Cytomegalovirus (CMV)
 - Hepatitis (A, B, C)
 - Human Papillomavirus (HPV)

Ocular Viral Infections

- Human herpes viruses (HSV type 1 and HSV type 2)
- Cytomegalolovirus (CMV)
- Adenovirus

TREATMENT

- Antiviral medication available for some viral pathogens
- Mechanism: block any step in viral replication, sometimes multiple medications must be used (e.g. HIV) and suppress but do not eliminate the virus from the host
- Challenges:
 - Viruses rely on human cells to replicate—need to stop virus without damaging host cells
 - For acute viral illnesses, Must be delivered in early viral replication phase of illness
 - Viruses often replicate rapidly and mutate rapidly, enabling them to become resistance to medications

YE BANK https://knowablemagazine.org/article/health-disease/2021/challenges-antiviral-treatments SSOCIATION

Organisms that lives on or in host organism

3 main classes:

- 1. Protozoa—microscopic, onecelled (e.g. giardia, malarial parasites)
- 2. Helminths—large, multicellular, visible worms (e.g. flatworms)
- 3. Ectoparasite—large, multicellular (ticks, fleas, lice, mites). Also vectors for other pathogens

MALARIA LIFECYCLE

https://www.news-medical.net/life-sciences/The-Malaria-Parasite-Life-Cycle.aspx

Table 1. Worldwide Prevalence of Parasitic infections

	Protozoa (P)/ Helminth (H): Scientific Name	Disease or Common Name	Estimated Worldwide Prevalence	Estimated Mortality Rank	Relative U.S. Prevalence
	P: Giardia Iamblia	Giardiasis ("beaver fever")	2-3 billion	Low	1-2 million per year
P	P: Toxoplasma gondii	Toxoplasmosis	1-2.5 billion	Very low	High rates of seroconversion but low rates of active infection ^a
	H: Ascaris lumbricoides	Ascariasis (roundworm)	1 billion	Very low	Uncommon
	H: Necator americanus	Hookworm disease	800-900 million	Very low	Somewhat, especially in the Southeast
	P: Trichomonas vaginalis	Trichomoniasis	15% of women worldwide ^b	Very low	More dependent on sexual behavior than geographic location
	P: Entamoeba histolytica	Amebiasis	200-400 million	No. 2	Low except in homosexual males, recent travelers, and immigrants
P: H:	P: Plasmodium spp ^c	Malaria	200-300 million	No. 1	Recent travelers and immigrants only ^d
	P: Schistosoma mansoni	Schistosomiasis	200-300 million	No. 3º	Uncommon
	H: Wuchereria bancrofti	Filariasis ⁽ (roundworm)	200 million	Very low	Uncommon
	H: Taenia solium®	Cysticercosis	>50 million	Low	May occur in those with poor hygiene and/or in contact with pigs
	H: Onchocerca volvulus	Onchocerciasis ("river blindness")	37 million	Low, but high morbidity	Low in the U.S., but higher in Central and South America (highest in Africa)
	P: Trypanosoma spph	Chagas disease ("African sleeping sickness")	15-20 million	No. 3	Normally endemic in Central and South America, but increasing in the U.S.
	P: Leishmania spp (many)	Leishmaniasis	12 million	No. 3	Uncommon, except in travelers, immigrants, and overseas military
	H: Enterobius vermicularis	Enterobiasis (pinworm)	Common, no estimates	Very low	Common

H: Enteroolus vermicularis Enteroolasis (pinworm) Common, no estimates very low

YE BANK

" Rates of positive serology in U.S. residents have been reported to be as high as 25% to 33% (and as low as 10%). ^b The prevalence of trichomoniasis in women is better known because females exhibit more symptoms. Men are often asymptomatic or mildly symptomatic carriers and transmitters of disease.

Treatment and prevention vary widely depending upon species and regional resistance patterns of Plasmodium.

^d Malaria was once endemic in the U.S. To read about how it was eliminated, visit www.cdc.gov/malaria/about/history/elimination_us.html. " The data are unclear regarding which infection is the third most mortal worldwide; it could be schistosomiasis, leishmaniasis (particularly the viscenal and mucocutaneous presentations), or trypanosomiasis.

Filariasis can be caused by several roundworm species that inhabit lymphatic and subcutaneous tissues, and many manifest as lymphatic filariasis or onchocerciasis ("river blindness").

⁴Taenia solium may cause intestinal tapeworm infection (taeniasis) that is typically acquired by undercooked infected pork. However, cysticercosis specifically is caused by the ingestion of fecal matter containing spores. This occurs via the oral-fecal route from someone currently infected by sporereleasing tapeworms.

^b Trypanosoma cruzi: Chagas disease or American trypanosomiasis; Trypanosoma brucei: "African sleeping sickness." spp: species. Source: References 1, 3, 6, 12, 19.

https://www.uspharmacist.com/article/drug-therapy-for-common-parasitic-infections-within-the-unitedstates

EXAMPLES OF PARASITES OF CONCERN Malaria (Plasmodium spp.)

- · P. falciparum causes most mortality
- Population at risk ~3.4 billion
- ~83 million DALYs in 2010
- ~627,000 deaths in 2012
- Gold standard drugs: Artemisnin combination therapies

African Trypanosomiasis (Trypanosoma spp.)

- Caused by T. brucei gambiense and T. brucei rhodesiense
- T. b. gambiense causes most cases
- Population at risk ~60 million
- ~0.6 million DALYs in 2010
- ~9,000 deaths in 2010
- Drugs: suramin, pentamidine, melarsoprol, eflornithine (i.v.)/nifurtimox (oral)

Leishmaniasis (Leishmania spp.)

- L. donovani causes visceral disease
- Population at risk ~350 million
- ~3.3 million DALYs in 2004
- ~52,000 deaths in 2010
- Drugs: pentavalent antimonials, amphotericin B and pentamidine

Toxoplasmosis (Toxoplasma spp.)

- Population at risk ~2 billion
- ~1.2 million DALYs (congenital)
- Drugs: pyrimethamine combined with a sulfonamide, clindamycin, cotrimoxazole, azithromycin, or atovaquone

- Malaria
- Toxoplasmosis
- Acanthamoeba
- Leishmania
- Chagas (T. cruzi)

Many have latent phase of disease, particular concern with immunosuppression

https://www.researchgate.net/figure/Distribution-and-disease-impact-of-major-humandiseases-caused-by-parasitic-protozoa_fig2_261029794

TREATMENT

Table 2. Antimalarial Drugs								
Drug	Prevention Dosage	Treatment Dosage	Notes on Treatment	Notes on Prophylaxis ^a				
Chloroquine	500 mg orally weekly	1 g orally initially, then 500 mg at 6, 24, and 48 h	Preferred over quinine for efficacy and toxicity reasons when <i>Plasmodium falciparum</i> is susceptible to chloroquine. Also preferred for <i>P vivax</i> or <i>P ovale</i> infections, followed by primaquine, if possible, to eradicate liver stages	For prevention, administer 2 doses (at a minimum, start 8 days before) prior to arrival in malarious area				
Quinine	325 mg orally daily	~650 mg orally q8h for 7 days; consider use with doxycycline to shorten duration to 3 days	The basis of therapy in most chloroquine-resistant areas. Given IV (usually as quinidine) for severe malaria	Requires daily doses and long-term use for prevention, which increases toxicity. Other preventive drugs are usually preferred				
Mefloquine	250 mg orally weekly	1,250 mg orally as a single dose	Susceptible strains can be treated with a large single dose. Effective against some chloroquine-resistant strains	Alternatively, can be given as a loading dose starting 4 days before traveling				
Primaquine	30 mg orally (base) ^b daily; 1-2 days before departure and continue for 7 days after leaving malarious area	30 mg daily orally for 14 days to prevent relapse	First, a standard antimalarial is used to treat the acute malarial case (e.g., chloroquine). Then, primaquine is used if infection is caused by <i>P vivax</i> or <i>P ovale</i> to prevent relapse	Rarely used for primary prevention of malaria due to its toxicity and risk in G6PD-deficient patients. May be used for prevention of any malaria species but most logically in areas with <i>P vivax</i> or <i>P ovale</i>				
Sulfadoxine- pyrimethamine	Not recommended for travelers. May be used for intermittent preventive therapy for at-risk patients	Usually a single oral dose: 50-75 mg pyrimethamine/1,000- 1,500 mg sulfadoxine	Relatively slower acting than some other agents; therefore, not preferred for severe malaria	No longer recommended for prevention or treatment of <i>P falciparum</i> in most parts of Africa due to high rates of partial, if not full, resistance				
Doxycycline	100 mg orally daily	100 mg orally twice daily; when used in combination with quinine the duration of quinine dosing may be shorted from 7 to 3 days	Not considered sufficient as monotherapy. Clindamycin may substitute for doxycycline in combination with quinine	Highly cost-effective for prophylaxis. Although used daily, should be continued for 4 wk after leaving area.				
Atovaquone- proguanil	1 tablet (250 mg/ 100 mg) orally once daily	4 tablets (total 1,000 mg/ 400 mg daily) for 3 days	Appropriate for chloroquine- resistant <i>P falciparum</i> , but rarely used for treatment	Primary use is for prophylaxis. It is uniquely sufficient to continue this agent for only 7 days after returning				
Artemether- lumefantrine (U.S.) or artesunate- amodiaquine (outside U.S.)	Not routinely used for malaria prevention	Artemether-lumefantrine is available in a fixed- dose combination: 80 mg/360 mg, 6 oral doses over 3 days	Rarely are the artemisinin derivatives or amodiaquine used alone. In combination, they are highly effective against multidrug-resistant <i>P falciparum</i>	Not recommended				

* Prophylaxis is usually 1 or 2 doses before departure and for up to sevenal weeks after returning. For weekly prophylaxis, the drug must be started a minimum of 7-14 days before entering the malaria-endemic area. Daily prophylaxis may be started as late as 1-2 days prior. See prescribing info ^b A 26.3-mg tablet of primaquine phosphate is equal to a 15-mg primaquine base. G6PD: glucose-6-phosphate dehydrogenase. Source: References 7-9.

https://www.uspharmacist.com/article/drug-therapy-for-common-parasitic-infections-within-the-·united-states

- Antiparasitics
- Antibiotics
- Anti-helminthic medication

Challenges:

- Life cycle of organism can be complex
- Resistance to medications (e.g. malaria treatment)

DENTIFYING PATHOGENS

Serology Histopathology_microscopic examination of blood/fluid

Bacteria

Culture (fluid or tissue) Tissue histology

Virus

PCR Histopathology (e.g. CMV)

Fungus

Culture Histopathology

Parasite

MECHANISM OF INFECTION AND DISEASE

https://microbenotes.com/factors-affecting-bacterial-pathogenicity/

HOST BARRIERS TO INFECTION **Natural Barriers**

- Skin (if disrupted, microorganisms can enter) + cornea Mucous membranes (tears, trapping action of mucus)
- Respiratory tract
 - Upper airway filters (mucociliary epithelium)
- Gastrointestinal tract
 - Acid pH of stomach
 - Antibacterial activity of pancreatic enzymes, bile, intestinal secretions
- Bacteria on surface of skin, in GI tract

Minine diate, does not require prior exposure to pathogen

- Macrophages phagocytize pathogen
- Release of cytokines by macrophages (chemical signals)
 - Attract neutrophils
 - Initiate inflammation (cause swelling, fever, pain etc)
 - of pathogens

Activate the adaptive immune system EYE BANK ASSOCIATION

Initiate complement system which enhances killing

ADAPTIVE IMMUNITY

- Highly specific to particular pathogen that has previously been encountered
- Macrophage ingests pathogen and presents antigen
 - Antigen = molecular structure that is on surface of pathogen (can be protein, peptide, lipid, nucleic acid)
- Stimulates:
 - Humoral immunity (B-cells, antibodies specific to antigen + memory) B-cells)
 - Cell-mediated immunity (T-cells)
- Creates immunological memory after an initial response to a pathogen
 - Memory B- and T-cells

https://ib.bioninja.com.au/higher-level/topic-11-animal-physiology/111-antibody-production-and/antibodies.https://www.nagwa.com/en/explainers/947125128689/

YE BANK ASSOCIATION ia 58 an the makers of the single images Domdomegg, [1], Fæ, Petr94, Manu5, CC BY-SA 4.0 < https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons Restore Sight.org **OF AMERICA®** • • • • • • • •

EYE BANK

ASSOCIATION https://clinicalinfo.hiv.gov/en/glossary/acquired-immunity

Immunity that develops during your lifetime

Passive Immunity

Develops after you receive antibodies from someone or somewhere else

Natural

Antibodies received from mother, e.g., through breast milk

Artificial

Antibodies received from a medicine, e.g., from a gamma globulin injection or infusion

VACCINES

VACCINES

YE BANK

Pollard, A.J., Bijker, E.M. A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol 21, 83–100 (2021). https://doi.org/10.1038/s41577-020-0 Page Tore Sight.org

Definition:

Biological product that can be used to safely induce an immune response to confer protection against infection and/or exposure to pathogen

Essential component: One or more protein or polysaccharide antigens that induce immune responses

VACCINE TECHNOLOGY

Type of vaccine		Licensed vaccines using this technology	First introduced
Live attenuated (weakened or inactivated)	- John	Measles, mumps, rubella, yellow fever, influenza, oral polio, typhoid, Japanese encephalitis, rotavirus, BCG, varicella zoster	1798 (smallpox)
Killed whole organism	- Jose	Whole-cell pertussis, polio, influenza, Japanese encephalitis, hepatitis A, rabies	1896 (typhoid)
Toxoid	$\begin{array}{cccc} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$	Diphtheria, tetanus	1923 (diphtheria)
Subunit (purified protein, recombinant protein, polysaccharide, peptide)	2221	Pertussis, influenza, hepatitis B, meningococcal, pneumococcal, typhoid, hepatitis A	1970 (anthrax)
Virus-like particle	÷	Human papillomavirus	1986 (hepatitis B)
Outer Pathog membrane antige vesicle		Group B meningococcal	1987 (group B meningococcal)
Protein–polysaccharide conjugate	Polysaccharide Carrier protein	Haemophilus influenzae type B, pneumococcal, meningococcal, typhoid	1987 (H. influenzae type b)
	iral ector Viral vector genes	Ebola	2019 (Ebola)
Nucleic acid vaccine	DNA Lipid coat	SARS-CoV-2	2020 (SARS-CoV-2)
Bacterial gene vectored	gen Bacterial vector	Experimental	12
Antigen- presenting cell	Pathogen -antigen	Experimental	-

rd, A.J., Bijker, E.M. A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol 21, 83–100 (2021). https://doi.org/10.1038/s41577-020-00479-7 Restore Sight.org

Classification

Live (attenuated)

Contains a weakened replicating strain of an organism

Inactivated

Contains only components of a pathogen or killed whole organisms

Subunit

Made from a piece of a pathogen, not the whole organism

Viral vector

Uses harmless virus to deliver to the host cells the genetic code of the antigen

Toxoid

Uses inactivated toxins to target toxic activity created by bacteria

mRNA

Uses mRNA (genetic material) that "teaches" our cells to make a harmless piece of the pathogen and triggers and immune response

Adjuvant: can be added to inactivated vaccines to improved immunogenicity of the vaccine

Pollard, A.J., Bijker, E.M. A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol 21, 83–100 (2021). https://doi.org/10.1038/s41577-020-00479-7 Restore Sight.org

Longevity of Protection

- Antibody levels wane over time
- Interplay between time of re-exposure, incubation of pathogen, rapidity of memory cell response
- Prevention of infection vs disease

Pollard, A.J., Bijker, E.M. A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol 21, 83–100 (2021). https://doi.org/10.1038/s41577-020-00 479tore Sight.org

LIVE VACCINES

'E BANK https://www.pfizer.com/news/articles/understanding_six_types_of_vaccine_technologies ASSOCIATION

Vaccine Target Live, attenuated vaccines target your body's immune system directly. They are strong enough to trigger the immune response, but TARGET: Immune system THREAT

Examples:

- MMR (measles, mumps, rubella) Yellow Fever vaccine
- Oral polio

Risk of live vaccines:

- Benign in most patients
- In immunocompromised individuals, risk of reversion to virulence
- Contraindicated in certain populations, including solid organ transplant (receiving systemic *immunosuppression*)

CORNEAL TRANSPLANT

CORNEA

Mechanisms of immune privilege:

- 1. Lack of vascular supply in lens and central cornea prevents innate and adaptive immune system from interfering
- 2. Vascular barrier in the eye helps keep clear from inflammation
- 90% aqueous humor does not drain to 3. lymph nodes
- Scarcity of antigen presenting cells (less 4. inflammation)

INFECTION RISK CORNEAL TRANSPLANT

- **Risk** of graft rejection
 - 2 year survival > 90%, but 25-70% in recipients with high-risk factors for rejection
- **Causes** of rejection/graft failure:
 - Immune rejection (immunologic response to graft)
 - Infection

EYE BANK https://www.ncbi.nlm.nih.gov/books/NBK519043/ ASSOCIATION

POST-TRANSPLANT INFECTION RISK

Highest risk due to immunosuppression of recipients and vascularization of organs

• Lower risk may reflect host's normal inflammatory and immune function as well as graft

CORNEAL TRANSPLANT INFECTIONS

- Important source of post-transplant infection is donor tissue
- Potential consequences transmitted infection: •
 - Endophthalmitis
 - Graft rejection
 - Loss of vision
 - Systemic illness

EBAA GUIDELINES ON COMMUNICABLE DISEASES

The following communicable diseases and disease agents are relevant for ocular tissue (\S 1271.3(r)(1)(i)):

- i. Human immunodeficiency virus (HIV), types 1 and 2;
- ii. Hepatitis B virus (HBV);
- iii. Hepatitis C virus (HCV);

iv. Human transmissible spongiform encephalopathy (TSE); Creutzfeldt-Jakob disease (CJD); and including

v. Treponema pallidum (syphilis)

EBAA GUIDELINES ON COMMUNICABLE DISEASES

II. A communicable disease agent or disease meeting the criteria described in § 1271.3(r)(2), but not specifically listed in § 1271.3(r)(1), is relevant if it is one:

- For which there may be a risk of transmission by ocular tissue
- That could be fatal or life-threatening
- For which appropriate screening measures have been developed
- Examples of RCDADs not specifically listed in § 1271.3(r)(1) as relevant include, but are not limited to:
 - West Nile Virus
 - Sepsis
 - Vaccinia
 - Zika Virus

CHART REVIEW

PATIENT CHART

PATIENT NAME:		AGE:		SEX AT BIRTH:	
WEIGHT:	BLOOD PRESSURE:	_	HEA	EART RATE:	
KEY SYMPTOMS	:				
		OBSEDVAT			
INITIAL DIAGNO	SIS: RESULTS: Regular Irregular	OBSERVAT	IONS	1	
	RESULTS:	OBSERVAT	IONS	:	

🗌 Regular

Viral data Parasite data

• Fevers

 Hemodynamic instability

Positive cultures (bacteria, fungus)

- Growth in a normally sterile site (e.g. blood, urine, CSF)
- Colonization vs infection
- PCR
- Serology
- Tissue pathology

CHART REVIEW

PATIENT CHART

PATIENT NAME:		AGE		SEX AT BIRTH:
WEIGHT:	BLOOD PRESSURE:		HEA	RT RATE:
KEY SYMPTOMS				
	SIS: RESULTS:	OBSERVA	TIONS	:
		OBSERVA	TIONS	:
	RESULTS:	OBSERVA	TIONS	
INITIAL DIAGNO	RESULTS:	OBSERVA	TIONS	

EYE BANK ASSOCIATION OF AMERICA®

History

Travel history Other important medical history

	• /
Hospital	t •
course	• [
	(

- Antibiotic/antifungal treatment
- Sepsis
- **Repeat blood** cultures?

Cause of death What role (if any) did infection play?

CHART REVIEW

Organism of Concern per EBAA

Example: West Nile Virus, Hepatitis B virus

Colonization or treated/cleared infection

Evidence of disseminated or difficult to treat infection

Reject

Example: repeat blood cultures negative

Possibly accept

Example: sepsis, repeat cultures positive, untreated infection

Reject

RestoreSight.org

CONCLUSIONS

- Infection rates low in corneal transplant but still a risk
- Understanding range of pathogens, virulence, immune system responses, and treatment can help guide chart review when looking for suitable donors

QUESTIONS

Thank you

- EBAA
- Stacey Gardner
- Genevieve Magnuson
- The Eye-Bank for Sight Restoration
- Patricia Dahl
- Michelle Rhee, MD

